4. Pal'mov, V. A., Propagation of vibrations in a nonlinear dissipative medium. PMM Vol. 31, N84, 1967.
5. Steklov, V. A., On the asymptotic behavior of solutions of linear differential equations. Khar'kov, Khar'kov Univ. Press, 1956.
6. Pal'mov, V.A., Propagation of random vibrations in a viscoelastic rod. In the collection : Relability Problems in Structural Mechanics. Vil'nius, Rep. Inst. of Scient. - Techn. Info. and Propaganda, 1968.

Translated by M.D.F.

ON THE STABILITY OF A NONAUTONOMOUS HAMILTONIAN SYSTEM WITH TWO DEGREES OF FREEDOM

PMM Vol. 33, № 3, 1969, pp. 563-569
A. P. Markeev
(Moscow)
(Received October 17, 1968)
Stability of the equilibrium position of a nonautonomous Hamiltonian system with two degrees of freedom is investigatied for the resonant case. The conditions of instability as well as those of formal stability are obtained.

1. We assume that the coordina ι origin $q_{i}=p_{i}=0$ corresponds to the position of equilibrium of the canonical system of differential equations

$$
\begin{equation*}
\frac{d q_{i}}{d t}=\frac{\partial H}{\partial p_{i}} \quad \frac{d p_{i}}{d t}=-\frac{\partial H}{\partial q_{i}} \quad(i=1,2) \tag{1.1}
\end{equation*}
$$

where H is a Hamiltonian function 2π-periodic in t and analytic in the vicinity of the point $q_{i}=p_{i}=0$.

Let the linearized system be stable and all its multipliers be distinct. We assume that the Hamiltonian in (1.1) is transformed into

$$
\begin{equation*}
H=1 / 2 \lambda_{1}\left(q_{1}^{2}+p_{1}^{2}\right)+1 / 2 \lambda_{2}\left(q_{2}^{2}+p_{2}^{2}\right)+\sum_{\nu=3}^{\infty} h_{\nu_{1} \nu_{2} \nu_{3} \nu_{4}}(t) q_{1}^{v_{1}} q_{2}^{\nu_{2}} p_{1}^{\nu_{3}} p_{2}^{\nu_{4}} \tag{1.2}
\end{equation*}
$$

by means of a real linear 2π-periodic canonical transformation [1]. In (1.2) $\pm i \lambda_{1}$ and $\pm i \lambda_{2}$ are the characteristic indices of the linearized system and ν_{i} are nonnegative integers

$$
v=v_{1}+v_{2}+v_{3}+v_{4}, \quad h_{v_{1} v_{2} v_{3} v_{4}}(t+2 \pi)=h_{v_{1} v_{2} v_{3} v_{4}}(t)
$$

We also assume that the condition

$$
\begin{equation*}
k_{1} \lambda_{1}+k_{2} \lambda_{2} \neq 0 \quad(\bmod 1) \tag{1.3}
\end{equation*}
$$

holds for the integers k_{1} and k_{2} satisfying the equalities $\left|k_{1}\right|+\left|k_{2}\right|=3$ or $\left|k_{1}\right|+$ $+\left|k_{2}\right|=4$. Then there exists [2] an analytic canonical transformation 2π-periodic in t, reducing the Hamiltonian (1.2) to the form

$$
\begin{gather*}
H=\lambda_{1} r_{1}+\lambda_{2} r_{2}+l_{2020} r_{1}^{2}+l_{1111} r_{1} r_{2}+l_{0202} r_{2}^{2}+O\left(|q|^{5}\right) \tag{1.4}\\
\left(|q|=\sqrt{q_{1}^{2}+q_{2}^{2}+{p_{1}}^{2}+\rho_{2}^{2}}, \quad 2 r_{i}=q_{i}{ }^{2}+p_{i}{ }^{2}\right)
\end{gather*}
$$

Coefficients $l_{\nu_{1} v_{2} v_{3} v_{4}}$ in (1.4) are independent of t. Let the quadratic form

$$
l_{2020} r_{1}^{2}+l_{1111} r_{1} r_{2}+l_{0202} r_{2}^{2}
$$

be sign definite in the quadrant $r_{1} \geqslant 0, r_{2} \geqslant 0$. Then the position of equilibrium is
formally stable [1, 3 and 4]. This means that for the system (1.1) there exists a power series, possibly divergent, $\quad G=G_{n}\left(q_{i}, p_{i}, t\right)+G_{n+1}\left(q_{i}, p_{i}, t\right)+\ldots$
which formally will be a positive definite integral 2π-periodic in t. In other words, all coefficients of the power series

$$
\begin{equation*}
G_{q_{1}} H_{p_{3}}-G_{p_{2}} H_{q_{1}}+G_{q_{2}} H_{p_{2}}-G_{p_{2}} H_{q_{2}}+G_{1} \tag{1.6}
\end{equation*}
$$ are identically equal to zero and

$$
\begin{aligned}
& G_{n}\left(q_{i}, p_{i}, t\right) \geqslant 0 \\
& G_{r}\left(q_{i}, p_{i}, t\right)=0
\end{aligned}
$$

only for $q_{i}=p_{i}=0$.
Formal stability implies that retention of terms of arbitrarily high power in v in the expansion (1.2) does not lead to detection of the Liapunov instability. Even if trajectories beginning at the coordinate origin exist, the progress along these trajectories is extremely slow [3 and 5-8].

In this paper we investigate the stability when condition (1.3) does not hold for $k_{i} \geqslant 0$. We assume that condition (1.3) does not hold for a single pair of nonnegative integers k_{1} and k_{2} satisfying the condition $k_{1}+k_{2}=3$ or $k_{1}+k_{2}=4$, i . e. we investigate nonmultiple resonances.

Thus we shall consider the following nine resonant cases:
(1) $3 \lambda_{1}=m$,
(2) $3 \lambda_{2}=m$,
(3) $\lambda_{1}+2 \lambda_{2}=m$
(4) $2 \lambda_{1}+\lambda_{2}=m$,
(5) $\quad 4 \lambda_{1}=m$,
(b) $4 \lambda_{2}=m$
(7) $2\left(\lambda_{1}+\lambda_{2}\right)=m$,
(8) $\quad \lambda_{1}+3 \lambda_{2}=m, \quad$ (9) $\quad 3 \lambda_{1}+\lambda_{2}=m$
where m is an integer.
Since the multipliers are assumed distinct, the integral and half-integral values of λ_{i} as well as those satisfying the equation $\lambda_{1} \pm \lambda_{2} \equiv 0(\bmod 1)$ are not considered. This means that the stability of (1.1) is studied within the region of stability of the linearized system.
2. We shall first consider the stability in the cases (1)-(4). Applying a real, analytic transformation 2π-periodic in t (see Sect. 4) we can eliminate all third degree terms in the Hamiltonian (1.2) other than resonant. In the new variables $q_{i}{ }^{*}$ and $p_{i}{ }^{*}$ the Hamiltonian becomes $\quad H^{*}=H_{2}{ }^{*}+H_{3}{ }^{*}+O\left(|q|^{4}\right)$

Here $H_{2}{ }^{*} \Rightarrow 1 / 2 \lambda_{1}\left(q_{1}{ }^{* 2}+p_{1}{ }^{* 2}\right)+1 / 2 \lambda_{2}\left(q_{2}{ }^{* 2}+p_{2}{ }^{* 2}\right)$, and expressions $H_{3}{ }^{*}$ for the cases (1)-(4) of (1.7) are
(1) $H_{3}^{*}=2 u_{0030}^{*}\left(q_{1}^{* 3}-3 q_{1}^{*} p_{1}^{* 2}\right)-2 v_{0030}^{*}\left(p_{1}^{* 3}-3 p_{1}^{*} q_{1}^{* 2}\right)$
(2) $H_{3}^{*}=2 u_{0003}^{*}\left(q_{2}^{* 3}-3 q_{2}^{*} p_{2}^{* 2}\right)-2 v_{\text {owN3 }}^{*}\left(p_{2}^{* 3}-3 p_{2}^{*} q_{2}^{*+2}\right)$
(3) $H_{3}^{*}=-2 u_{0012}^{*}\left[q_{1}^{*}\left(p_{2}^{* 2}-q_{2}^{* 2}\right)+2 p_{1}^{*} q_{2}^{*} p_{2}^{*}\right]-2 v_{0012}^{*}\left[p_{1}^{*}\left(p_{2}^{* 2}-q_{2}^{*}\right)-2 q_{1}^{*} q_{2}^{*} p_{2}^{*}\right]$
(4) $H_{3}^{*}=-2 u_{0021}^{*}\left[q_{2}^{*}\left(p_{1}^{k 2}-q_{1}^{* 2}\right)+2 p_{2}^{*} q_{1}^{*} p_{1}^{*}\right]-2 r_{0021}^{*}\left[p_{2}^{*}\left(p_{1}^{* 2}-q_{1}^{* 2}\right)-2 q_{2}^{*} q_{1}^{*} p_{1}^{*}\right]$
respectively.
The following notation is introduced in (2.1):

$$
\begin{align*}
& x_{v_{1} v_{2} v_{3} v_{4}}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(u_{\nu_{1} v_{2} v_{3} v_{4}}^{\prime} \cos m t-v_{v_{1} y_{2} v_{3} v_{4}}^{\prime} \sin m t\right) d t \tag{2.2}
\end{align*}
$$

$$
y_{v_{1} v_{2} v_{3} v_{4}}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(u_{v_{1} v_{2} v_{3} v_{4}}^{\prime} \sin m t+v_{v_{1} \nu_{2} v_{3} v_{4}}^{\prime} \cos m t\right) d t
$$

Expressions for $u_{v_{1} \nu_{2} \nu_{3} \nu_{4}}^{\prime}$ and $v_{v_{1} \nu_{2} \nu_{3} \nu_{4}}^{\prime}$ are given in Sect. 4.
For each of the resonant cases (1)-(4) the following theorem holds.
Theorem 2.1. If $x_{v_{g_{2} \nu_{3} \nu_{4}}^{2}}^{2}+y_{v_{1} \nu_{2} \nu_{3} \nu_{4}}^{2} \neq 0$, the position of equilibrium is unstable.
We shall prove this for case (1). After the canonical transformation
where

$$
\begin{align*}
& q_{i}^{*}=p_{i}^{\circ} \sin \left(\lambda_{i} t-\theta\right)+q_{i}{ }^{\circ} \cos \left(\lambda_{i} t-\theta\right) \\
& p_{i}^{*}=p_{i}{ }^{\circ} \cos \left(\lambda_{i} t-\theta\right)-q_{i}{ }^{\circ} \sin \left(\lambda_{i} t-\theta\right) \tag{2.3}
\end{align*}
$$

$$
\sin 3 \theta=\frac{y_{0030}}{\sqrt{x_{0020}^{2}+y_{0030}^{2}}}, \quad \cos 3 \theta=\frac{x_{0030}}{\sqrt{x_{0030}^{2}+y_{0030}^{2}}}
$$

we obtain the Hamiltonian in the following form which is independent of t up to the third order terms inclusive:

$$
H^{\circ}=2 \sqrt{x_{0030^{2}}+y_{0070^{2}}} \quad\left(q_{1}{ }^{\circ 3}-3 q_{1}{ }^{\circ} p_{1}{ }^{\circ}\right)+O\left(|q|^{9}\right)
$$

Changing to polar coordinates

$$
\begin{equation*}
q_{i}^{\circ}=\sqrt{2 r_{i}} \sin \varphi_{i}, \quad p_{i}^{\circ}=\sqrt{2 r_{i}} \cos \varphi_{i} \quad(i=1,2) \tag{2.4}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
H^{\circ}=-4 \sqrt{2\left(x_{0030}^{2}+y_{0000}^{2}\right)} r_{1} \sqrt{r_{1}} \sin 3 \varphi_{1}+O\left(|q|^{4}\right) \tag{2.5}
\end{equation*}
$$

Using now Chetaev theorem [9] to prove the instability, we take the function V in the form $V=V_{1} V_{2}$, where

$$
\begin{equation*}
V_{1}=r_{1}^{\alpha}-r_{2}^{2}, V_{2}=r_{1} \sqrt{r_{1}} \cos 6 \varphi_{1}(\alpha>2) \tag{2.6}
\end{equation*}
$$

and define the region $V>0$ by ($V_{1}>0,-\pi / 12<\varphi_{1}<\pi / 12$). At the boundary of this region either V_{1} or V_{2} is equal to zero and within the region the following equality holds :

$$
\begin{equation*}
r_{2}=\beta r_{1}^{\alpha / 2} \quad(0<\beta<1) \tag{2.7}
\end{equation*}
$$

We choose the parameter α so, that the derivative of V (by virtue of the equations of motion containing the Hamiltonian (2.5)), is positive definite in the region $V>0$.

It can easily be verified that for $2<\alpha<3$

$$
\begin{gather*}
\frac{d V}{d t}=6 \sqrt{2\left(x_{0030}^{2}+y_{0030}^{2}\right)} r_{1}^{\alpha+2}\left\{\left[2 \alpha \cos 3 \varphi_{1}+f_{1}\right] \cos 6 \varphi_{1}+3\left(1-\beta^{2}\right) \times\right. \\
\left.\times\left[\cos 3 \varphi_{1}+\sin 3 \varphi_{1} \sin 6 \varphi_{1}+f_{2}\right]\right\} \tag{2.8}
\end{gather*}
$$

where f_{1} and f_{2} become arbitrarily small when r_{1} tends to zero.
In the region $V>0$ we have $\cos 3 \varphi_{1}>V 2 / 2$ and $\cos 3 \varphi_{1}+\sin 3 \varphi_{1} \sin 6 \varphi_{1} \geqslant 1$.
It therefore follows from (2.7) and (2.8) that for sufficiently small $|q|$ the function $d V / d t$ is positive definite in the region $V>0$, and by the Chetaev theorem the position of equilibrium is unstable.

In case (3), applying (2.3) and (2.4) where we now have
we obtain

$$
\sin 3 \theta=\frac{y_{0012}}{\sqrt{x_{0012}^{2}+y_{0012}^{2}}}, \quad \cos 3 \theta=\frac{x_{0012}}{\sqrt{x_{0012}^{2}+y_{0012}^{2}}}
$$

$$
\begin{equation*}
H^{\mathrm{o}}=-4 \sqrt{2\left(x_{0012}^{2}+y_{0012}^{2}\right)} r_{2} \sqrt{r_{1}} \sin \left(\varphi_{1}+2 \varphi_{2}\right)+O\left(|q|^{4}\right) \tag{2.9}
\end{equation*}
$$

In order to prove the instability, the Chetaev function should be taken in the form $V=V_{1} V_{2}$, where

$$
\begin{equation*}
V_{1}=r_{2}^{\alpha}-\left(r_{2}-2 r_{1}\right)^{2}, V_{2}=r_{2} \sqrt{r_{1}} \cos 2\left(\varphi_{1}+2 \varphi_{2}\right) \quad(2<\alpha<3) \tag{2.10}
\end{equation*}
$$

and the region $V>0$ should be defined by ($V_{1}>0,-\pi / 4<\varphi_{1}+2 \varphi_{2}<\pi / 4$).
Proof of the theorem for the cases (2) and (4) is analogous to that of (1) and (3),
respectively.
3. Next we shall consider the stability in the cases (5)-(9). Here the transformed Hamiltonian in polar coordinates has the form

$$
\begin{equation*}
I^{\circ}=l_{2020} r_{1}^{2}+l_{1111} r_{1} r_{2}+l_{\theta 202} r_{2}^{2}-H^{* *}\left(r_{i}, \varphi_{1}\right)+H^{\prime}\left(r_{i}, \varphi_{i}, t\right) \tag{3.1}
\end{equation*}
$$

In (3.1) $H^{\prime}=O\left(|q|^{5}\right)$ and the function $H^{* *}$ for the cases (5)-(9) is, respectively,
(5) $H^{* *}=\sqrt{x_{0040}^{2}+y_{0040}^{2}} r_{1}{ }^{2} \sin \angle \varphi_{1}$
(6) $H^{* *}=\sqrt{x_{0004}^{2}+y_{0004}^{2}} r_{2}^{2} \sin 4 \varphi_{2}$
(7) $H^{* *}=\sqrt{x_{2200}^{2}+y_{2200}^{2}} r_{1} r_{2} \sin 2\left(\varphi_{1}+\varphi\right)$
(8) $H^{* *}=\sqrt{x_{1300}^{2}+y_{1300}^{2}} r_{2} \sqrt{r_{1} r_{2}} \sin \left(\varphi_{1}+3 \varphi_{2}\right)$
(9) $H^{* *}=\sqrt{x_{3100}^{2}+y_{3100}^{2}} r_{1} \sqrt{r_{1} r_{2}} \sin \left(3 \varphi_{1}+\varphi_{2}\right)$

When bringing the Hamiltonian to the form (3.1) we assume, that

$$
x_{v_{1} v_{2} v_{3} v_{4}}^{2}+y_{v_{1} v_{2} v_{8} v_{4}}^{2} \neq 0
$$

and in the formulas (2.3) we nave

$$
\sin 4 \theta=-\frac{x_{\nu_{1} v_{2} v_{3} v_{4}}}{\sqrt{x_{v_{1} v_{2} v_{3} v_{4}}^{2}+y_{v_{1}}^{2} v_{2} v_{3} v_{4}}}, \quad \cos 4 \theta=-\frac{y_{v_{1} v_{1} v_{3} v_{3} v_{1}}}{\sqrt{x_{v_{1} v_{2} v_{3} v_{4}}^{2}+y_{v_{1} v_{2} v_{3} v_{4}}^{2}}}
$$

Formulas for $l_{v_{1} v_{1} v_{3} v_{1}}, x_{v_{1} v_{2} v_{s} \nu_{4}}$ and $y_{v_{1} v_{2} v_{3} v_{4}}$ are given in Sect. 4 .
We introduce the quantities A_{j}. and $B_{j}(j=5,6,7,8,9)$ for each of the resonant cases (5)-(9), defining them as follows:

$$
\begin{array}{rlrl}
A_{5} & =\sqrt{x_{0010}^{2}+y_{0040}^{2}}, & B_{5} & =l_{80: 0} \\
A_{8} & =\sqrt{x_{0004}^{2}+y_{0004}^{2}}, & B_{8}=l_{0002} \\
A_{7} & =\sqrt{x_{2200}^{2}+y_{2200}^{2},} & & B_{7}=l_{2020}+l_{1111}+l_{0002} \tag{3.3}\\
A_{8} & =3 \sqrt{3\left(x_{1300}^{2}+y_{1300}^{2}\right)}, & B_{8}=l_{8000}+3 l_{1111}+9 l_{0002} \\
A_{8} & =3 \sqrt{3\left(x_{3100}^{2}+y_{1100}^{2}\right)}, & & B_{9}=9 l_{6000}+3 l_{1111}+l_{0: 02}
\end{array}
$$

Theorem 3.1. If the inequalities $A_{j} \neq 0$ and $A_{j}>\left|B_{j}\right|$ hold simultaneously, the position of equilibrium is unstable. If $A_{j}<\left|B_{j}\right|$ and the Hamiltonian includes terms of up to the fourth order, the equilibrium is stable. If the function $H^{\circ}-H^{\prime}$ is sign definite, the position of equilibrium is formally stable.

Let us prove the theorem for case (5) To prove the first statement of the theorem we take the Chetaev function in the form $V=V_{1} V_{2}$, where

$$
\begin{equation*}
V_{1}=r_{1}^{\alpha}-r_{2}^{2}, \quad V_{2}=r_{1}{ }^{4} \cos 4 a \varphi_{1}(a=1+\varepsilon, 2<\alpha<3, \quad 0<\varepsilon \ll 1) \tag{3.4}
\end{equation*}
$$

and define the region $V>0$ by ($\left.V_{1}>0,-\pi / 8 a<\varphi_{1}<\pi / 8 a\right)$.
Within $V>0$, we have

$$
r_{2}=\beta r_{1}{ }^{\alpha / 2} \quad(0<\beta<1)
$$

and the derivative is

$$
\begin{gather*}
\frac{d V}{d t}=4 r_{1}^{\alpha 13}\left\{\left(\alpha A _ { 5 } \operatorname { c o s } \{ \varphi _ { 1 } + g _ { 1 }) \operatorname { c o s } \left\{a \varphi_{1}+2\left(1-\beta^{2}\right)\left[A _ { 5 } \operatorname { c o s } \left\{\varepsilon \varphi_{1}-B_{5} \sin 4 a \varphi_{1}+\right.\right.\right.\right.\right. \\
\left.\left.+\varepsilon \sin .4 a \varphi_{1}\left(A_{5} \sin 4 \varphi_{1}-B_{5}\right)+g_{2}\right]\right\} \tag{3.5}
\end{gather*}
$$

where the functions g_{1} and g_{2} are arbitrarily small when r_{1} tends to zero.
Since by definition we have $A_{5}>\left|B_{5}\right|$, therefore at sufficiently small e the function
$d V / d t$ will be positive definite in the region $V>0$ for sufficiently small $|q|$. This proves the statement on instability.

Second statement of the theorem is proved by constructing a Liapunov function for the truncated system with a Hamiltonian $H^{\circ}-H^{\prime}$, possessing two integrals $r_{2}=$ onst and $H^{\circ}-H^{\prime}=$ const. This function is taken in the form

$$
\begin{equation*}
W={r_{2}}^{4}+\left(H^{\circ}-H^{\prime}\right)^{2} \tag{3.6}
\end{equation*}
$$

It is easy to verify that the latter is positive definite for $A_{5}<\left|B_{5}\right|$, therefore the position of equilibrium is stable [10].

To prove the last statement of the theorem we apply the transformations described in Sects, 2 and 4 to the Hamiltonian (1.2) reducing it formally to a function independent of t in all orders. Then the expression $G \equiv H^{\circ}$ will formally be the integral of (1.1), provided that it is written out in the initial variables q_{i} and p_{i}. We obtain

$$
G=G_{1}+G_{5}^{\prime}+\ldots \quad\left(G_{4} \equiv H^{\circ}-H^{\prime}\right)
$$

Therefore, if $H^{\circ}-H^{\prime}$ is a sign definite function, the position of equilibrium is formally stable.

In case (7) we prove the instability with the aid of Chetaev function $V=V_{1} V_{2}$, where

$$
\begin{align*}
\Gamma_{1}=r_{2}^{\alpha}-\left(r_{1}-r_{2}\right)^{2}, \quad \Gamma_{2}= & r_{1} r_{2} \cos 2 a\left(\varphi_{1}+\varphi_{2}\right) \quad(a=1+\varepsilon, 2<\alpha<3 \\
& 0<\varepsilon \ll 1) \tag{3.7}
\end{align*}
$$

defining the region $V>0$ by $\left(V_{1}>0,-\pi / 4 a<\varphi_{1}+\varphi_{2}<\pi / 4 a\right)$. The stability in case (7) is proved with the aid of the Liapunov function

$$
\begin{equation*}
W=\left(r_{1}-r_{2}\right)^{4}+\left(H^{0}-H^{\prime}\right)^{2} \tag{3.8}
\end{equation*}
$$

In case (8) we can take the function V in the form $V=V_{1} V_{2}$, where $V_{1}=r_{2}^{\alpha}-\left(r_{2}-3 r_{1}\right)^{2}, V_{2}=r_{2} \sqrt{r_{1} r_{2}} \cos a\left(\varphi_{1}+3 \varphi_{2}\right)(a=1+\varepsilon, 2<\alpha<3,0<\varepsilon \ll 1)$ and define the region $V>0$ by $\left(V_{1}>0,-\pi / 2 a<\varphi_{1}+3 \varphi_{2}<\pi / 2 a\right)$. Function W in this case can be taken in the form

$$
W=\left(r_{2}-3 r_{1}\right)^{4}+\left(H^{\circ}-H^{\prime}\right)^{2}
$$

Consideration of the resonances (6) and (9) is analogous to that of (5) and (8), respectively.

Notes. a) Resonances $k_{1} \lambda_{1}+k_{2} \lambda_{2} \equiv 0(\bmod 1)$ for wnich $\left|k_{1}\right|+\left|k_{2}\right| \geqslant 5$ are not essential for the proof of Theorem 3.1 on formal stability.
b) If the equality $x_{v_{1} \nu_{2} \nu_{3} \nu_{4}}^{3}+y_{v_{1} \nu_{2} \nu_{3} \nu_{4}}^{2}=0$ holds in cases (1)-(9), the presence of a resonance does not obstruct in reduction of the Hamiltonian to the form (1.4), and the criterion of formal stability given in Sect. 1 is applicable.
4. Here we give the computational formulas, Let the Hamiltonian in (1.1) have the form (1.2). We shall introduce new canonical variables q_{i}^{*} and $p_{i}{ }^{*}$ by means of the following generating function:

$$
S=q_{1} p_{1}^{*}+q_{2} p_{2}^{*}+\sum_{v=3} s_{v_{1} v_{2} v_{3} v_{4}}(t) q_{1}^{v_{1}} q_{2}^{v_{2}} p_{1}^{* v_{2}} p_{2}^{*} v_{4}
$$

Here $\left.s_{v_{1} \nu_{2} v_{3} v_{4}}(t+2 \pi)=s_{v_{1} \nu_{2} \nu_{3} v_{4}}{ }^{t}\right)$. Let us denote the new Hamiltonian by $H^{*}\left(q_{i}{ }^{*}\right.$, $p_{i}{ }^{*}, t$). We have the following identity:

$$
\begin{equation*}
H^{*}\left(\frac{\partial S}{\partial p_{i}^{*}}, p_{i}^{*}, t\right) \equiv H\left(q_{i}, \frac{\partial S}{\partial q_{i}}, t\right)+\frac{\partial S}{\partial t} \tag{4.1}
\end{equation*}
$$

which yields

$$
\begin{gather*}
H_{3}^{*}=H_{2 ;} \quad H_{3}^{*}=H_{3}+D S_{3} \tag{4.2}\\
H_{4}^{*}=H_{4}+\sum_{i=1}^{2} \frac{1}{2} \lambda_{i}\left[\left(\frac{\partial S_{3}}{\partial q_{i}}\right)^{2}-\left(\frac{\partial S_{3}}{\partial p_{i}{ }^{*}}\right)^{2}\right]+\frac{\partial H_{3}}{\partial p_{i}^{*}} \frac{\partial S_{3}}{\partial q_{i}}-\frac{\partial H_{3}^{*}}{\partial q_{2}} \frac{\partial S_{3}}{\partial p_{i}{ }^{*}}
\end{gather*}
$$

Here $H_{k}, H_{k}{ }^{*}$ and S_{k} are homogeneous k th degree functions in expansions into the power series of H, H^{*} and S, and D denotes the operator

$$
D=\lambda_{1}\left(p_{1}^{*} \frac{\partial}{\partial q_{1}}-q_{1} \frac{\partial}{\partial p_{1}{ }^{*}}\right)+\lambda_{2}\left(p_{2}^{*} \frac{\partial}{\partial q_{2}}-q_{2} \frac{\partial}{\partial p_{2}^{*}}\right)+\frac{\partial}{\partial t}
$$

Let us choose the coefficients $s_{v_{1} \nu_{2} v_{2} \nu_{4}}$ such that the function $H_{3}{ }^{*}$ would assume its simplest form. Proceeding to complex conjugate canonic variables

$$
q_{k}^{\prime}=q_{k}+i p_{k}^{*}, \quad p_{k}^{\prime}=q_{k}-i p_{k}^{*} \quad(k=1,2)
$$

it is easy to show [2] that $H_{3}{ }^{*}$ can be eliminated if

$$
a_{v_{1} v_{2} v_{3} v_{4}}=\lambda_{1}\left(v_{3}-v_{1}\right)+\lambda_{2}\left(v_{4}-v_{2}\right)
$$

is not an integer. Simple manipulation yields the following expressions for the coeffici-

$$
\begin{align*}
& \text { ents } s_{v_{1} v_{2} v_{s} v_{4}}: \quad s_{0300}=u_{0003}^{\prime \prime}+u_{0102}^{\prime \prime}, \quad s_{0102}=u_{0102}^{\prime \prime}-3 u_{0003}^{\prime \prime}, \quad s_{0201}=v_{0102}^{\prime \prime}+3 v_{0003}^{\prime \prime}, \\
& s_{0003}=v_{0102}^{\prime \prime}-v_{0003}^{\prime \prime}, \quad s_{3000}=u_{00 \div 0}^{\prime \prime}+u_{1020}^{\prime \prime}, \quad s_{1020}=u_{1020}^{\prime \prime}-3 u_{0030}^{\prime \prime}, \\
& s_{2010}=v_{1020}^{\prime \prime}+3 v_{0030}^{\prime \prime}, \quad s_{0030}=v_{1020}^{\prime \prime}-v_{0030}^{\prime \prime}, \quad s_{1002}=u_{0111}^{\prime \prime}-u_{0012}^{\prime \prime}-u_{0210}^{\prime \prime} \\
& s_{1200}=u_{0012}^{\prime \prime}+u_{0210}^{\prime \prime}+u_{0111}^{\prime \prime}, \quad s_{0210}=v_{0111}^{\prime \prime}+v_{0012}^{\prime \prime}+v_{0210}^{\prime \prime}, \quad s_{0111}=2\left(u_{0210}^{\prime \prime}-u_{0012}^{\prime \prime}\right) \\
& s_{0012}=v_{0111}^{\prime \prime}-v_{0012}^{\prime \prime}-v_{0210}^{\prime \prime}, \quad s_{1101}=2\left(v_{0012}^{\prime \prime}-v_{0210}^{\prime \prime}\right) \\
& s_{0120}=u_{1011}^{\prime \prime}-u_{0021}^{\prime \prime}-u_{2001}^{\prime \prime}, \quad s_{2100}=u_{0021}^{\prime \prime}+u_{2001}^{\prime \prime}+u_{1011}^{\prime \prime} \tag{4.3}\\
& s_{2001}=v_{1011}^{\prime \prime}+v_{0021}^{\prime \prime}+v_{2001}^{\prime \prime}, \quad s_{0021}=v_{1011}^{\prime \prime}-v_{0021}^{\prime \prime}-v_{2001}^{\prime \prime} \\
& s_{1011}=2\left(u_{2001}^{\prime \prime}-u_{0021}^{\prime \prime}\right), \quad s_{1110}=2\left(v_{0021}^{\prime \prime}-v_{2001}^{\prime \prime}\right) \\
& u_{v_{1} v_{2} v_{3} v_{4}}=g(t) \sin a_{v_{1} v_{2} v_{3} v_{4}} t+f(t) \cos a_{v_{1} \nu_{2} v_{3} v_{4}} t \\
& v_{v_{1} v_{2} v_{3} v_{4}}^{\prime \prime}=g(t) \cos a_{v_{1} v_{2} v_{3} v_{4}} t-f(t) \sin a_{v_{1} v_{2} v_{3} v_{4}} t \tag{4.4}\\
& g(t)=\operatorname{ctg} \pi a_{v_{1} v_{2} v_{3} v_{4}} I_{1}(2 \pi)+I_{2}(2 \pi)-2 I_{2}(t) \\
& I_{1}(t)=\int_{0}^{t}\left(u_{v_{1} \nu_{2} v_{3} v_{4}}^{\prime} \cos a_{v_{1} v_{2} v_{3} v_{4}} x-v_{v_{1} v_{2} \nu_{3} \nu_{4}} \sin a_{v_{1} \nu_{2} v_{3} \nu_{4}} x\right) d x \tag{4.5}\\
& J_{2}(t)=\int_{0}^{t}\left(u_{v_{1} v_{2} v_{3} v_{4}}^{\prime} \sin a_{v_{1} v_{2} v_{3} v_{4}} x+v_{v_{1} \nu_{2} v_{2} v_{4}}^{\prime} \cos a_{v_{1} v_{2} v_{3} v_{4}} x\right) d x \tag{4.6}\\
& u_{0003}^{\prime}=1 / 8\left(h_{0300}-h_{0102}\right), \quad v_{0003}^{\prime}=1 / 8\left(h_{0201}-h_{0003}\right) \\
& u_{0102}^{\prime}=1 / 8\left(h_{0102}+3 h_{0500}\right), \quad v_{0102}^{\prime}=1 / 8\left(h_{0201}+3 h_{0003}\right) \\
& u_{0030}^{\prime}=1 / 8\left(h_{3000}-h_{1020}\right), \quad v_{0030}^{\prime}=1 / 8\left(h_{2010}-h_{0030}\right) \\
& u_{1020}^{\prime}=1 / 8\left(h_{1020}+3 h_{3000}\right), \quad v_{1020}^{\prime}=1 / 8\left(h_{2010}+3 h_{0030}\right) \tag{4.7}\\
& u_{0111}^{\prime}=1 / 4\left(h_{1200}+h_{1002}\right), \quad v_{0111}^{\prime}=1 / 4\left(h_{0012}+h_{0210}\right) \\
& u_{0012}^{\prime}=1 / 8\left(h_{1200}-h_{1002}-h_{0111}\right), \quad v_{0012}^{\prime}=1 / 8\left(h_{0210}-h_{0012}+h_{1101}\right) \\
& u_{0210}^{\prime}=1 / 8\left(h_{1200}-h_{1002}+h_{0111}\right), \quad v_{0210}^{\prime}=1 / 8\left(h_{0210}-h_{0012}-h_{1101}\right) \\
& u_{1011}^{\prime}=1 / 4\left(h_{2100}+h_{0120}\right), \quad v_{v_{1011}}^{\prime}=1 / 4\left(h_{2001}+h_{0021}\right) \\
& u_{0021}^{\prime}=1 / 8\left(h_{2100}-h_{0120}-h_{1011}\right), \quad v_{0021}^{\prime}=1 / 8\left(h_{2001}-h_{0021}+h_{1110}\right) \\
& u_{2001}^{\prime}=1 / 8\left(h_{2100}-h_{0120}+h_{1011}\right), \quad v_{2001}^{\prime}=1 / 8\left(h_{2001}-h_{0021}-h_{1110}\right)
\end{align*}
$$

But if $a_{v_{1} v_{2} v_{3} v_{4}}=m$ (m is an integer), then the function $H_{3}{ }^{*}$ cannot be made to vanish identically. It can however be reduced to a normal form, reflecting the resonant character of the problem. In Sect. 2, the transformed function is given for particular cases of the resonance $a_{v_{1} v_{2} v_{3} v_{6}}=m$.

Function $H_{4}{ }^{*}$ can be simplified in a similar manner. Coefficients of the normal form required in the investigation of stability in the resonant cases (5)-(9) are

$$
\begin{gather*}
l_{2020}=\frac{1}{4 \pi} \int_{0}^{2 \pi}\left(h_{2020}^{*}+3 h_{0040}^{*}+3 h_{4000}^{*}\right) d t \\
l_{1111}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(h_{2200}^{*}+h_{0220}^{*}+h_{2002}^{*}+h_{0022}^{*}\right) d t \\
l_{0202}=\frac{1}{4 \pi} \int_{0}^{2 \pi}\left(h_{0202}^{*}+3 h_{0004}^{*}+3 h_{0400}^{*}\right) d t
\end{gather*}
$$

Coefficients $x_{\nu_{1} \nu_{2} \nu_{3} v_{4}}$ and $y_{\nu_{1} \nu_{2} \nu_{3} v_{4}}$ are obtained from (2.2), where we must set

$$
\begin{gather*}
u_{0040}^{\prime}=1 / 2\left(h_{0040}^{*}+h_{4000}^{*}-h_{2020}^{*}\right), \quad v_{0040}^{\prime}=1 / 2\left(h_{3010}^{*}-h_{100}^{*}\right) \\
u_{0004}^{\prime}=1 / 2\left(h_{0004}^{*}+h_{0400}^{*}-h_{0202}^{*}\right), \quad v_{0004}^{0}=1 / 2\left(h_{0301}^{*}-h_{0103}^{*}\right) \\
u_{1300}^{\prime}=1 / 2\left(h_{1300}^{*}+h_{1013}^{*}-h_{1102}^{*}-h_{0211}^{*}\right), \quad v_{1300}^{\prime}=1 / 2\left(h_{0112}^{*}+\right. \\
\left.+h_{1003}^{*}-h_{0310}^{*}-h_{1201}^{*}\right), \quad u_{3100}^{\prime}=1 / 2\left(h_{3100}^{*}+h_{0031}^{*}-h_{1120}^{*}-h_{2011}^{*}\right) \tag{4.9}\\
v_{3100}^{*}=1 / 2\left(h_{1021}^{*}+h_{0130}^{*}-h_{2110}^{*}-h_{3001}^{*}\right), \quad u_{2200}^{\prime}=1 / 2\left(h_{0022}^{*}+\right. \\
\left.+h_{2200}^{*}-h_{0220}^{*}-h_{2002}^{*}-h_{1111}^{*}\right), \quad v_{2200}^{*}=1 / 2\left(h_{0121}^{*}+h_{1012}^{*}-h_{1210}^{*}-h_{2101}^{*}\right)
\end{gather*}
$$

Here $h^{*}{ }_{v_{1} v_{2} v_{3} \nu_{4}}$ are the coefficients accompanying the corresponding powers in $H_{4}{ }^{*}$ computed according to the formula (4.2).

In conclusion we note certain inaccuracies which appeared in [11] in the proof of instability. Derivatives of the functions (2.8) and (3.8) of this paper can assume negative values near the boundaries of the corresponding regions $V>0$ and, consequently, need not be positive definite in these regions. For $\omega_{1}=2 \omega_{2}$ and $\omega_{1}=3 \omega_{2}$, the value of V used in the present paper in the cases (3) and (8), respectively, should be adopted, and for $\omega_{1}=3 \omega_{3}$ in the condition of instability the sign \geqslant should be replaced by $>$.

Thanks are due to A. L. Kunitsyn and Iu. A. Sadov who kindly drew my attention to the above inaccuracies.

BIBLIOGRAPHY

1. Moser, J. , New aspects in the theory of stability of Hamiltonian systems. Comm. Pure appl. math. . Vol. 11, No1, 1958.
2. Birkhoff, J. D. , Dynamic Systems. M. -L., Gostekhteorizdat, 1941.
3. Glimm, J. , Formal stability of Hamiltonian systems. Comm. Pure appl. math. . Vol. 17, N4, 1964.
4. Briuno, A. D. , On the formal stability of Hamiltonian systems. Matem. zametki, Vol. 1, No3, 1967.
5. Moser, J., Stabilitatsverhalten kanonischer Differentialgleichungssysteme. Nachricht. Akad. Wiss. Gottingen, Math. Phys. K1. , 2a, Nr. 6, 1955.
6. Moser, J., On the elimination of the irrationality condition and Birkhoff's concept of complete stability. Bol. Soc. mat. Mexicana, Vol. 5, 1960.
7. Zigel', K. L., Lectures on Celestial Mechanics. M., Izd. inostr. lit., 1959.
8. Arnol'd, V.I., On the instability of dynamic systems with many degrees of freedom. Dok1. Akad. Nauk SSSR, Vol. 156, №1, 1964.
9. Chetaev. N. G. . Stability of Motion. M. , "Nauka", 1965.
10. Liapunov, A. M., Collected Works. Vol. 2, M., Izd. Akad. Nauk SSSR, 1956.
11. Markeev, A. P., Stability of a canonical system with two degrees of freedom in the presence of resonance. PMM Vol. 32, N34, 1968.

Translated by L. K.

CONCERNING SOME SPACECRAFT CONVERGENCE CONTROL LAWS

PMM Vol. 33, N33, 1969, pp. 570-573
D. A. MAMATKAZIN
(Moscow)
(Received October 24, 1968)

The problem of motion of an interceptor spacecraft along a three-dimensional trajectory in a central gravitational field is considered; this trajectory is the mapping in the involute plane of the shape, dimensions, and orientation of the Keplerian orbit of the target spacecraft. Control laws which yield analytical solutions of the encounter problem are

Fig. 1 chosen. The active spacecraft is referred to as the "interceptor", the passive spacecraft as the "target".

1. The motion of the interceptor under the controlling acceleration W applied to its center of mass O_{1} is described by equations in the rotating right-nand ortiogonal coordinate system $O x y z$ whose y-axis coincides with the radius vector constructed from the attracting center O to the point O_{1}, and whose x-axis coincides with the direction of motion in such a way that the vector of the absolute velocity of the interceptor's center of mass lies in the x_{y}-plane. The orientation of the axes $x y z$ relative to the inertial coordinates is defined (see Fig. 1) by the longitude Ω of the ascending node, the inclination i of the instantaneous orbital plane to the equator, and the range angle u. The equations of motion of the center of mass of the interceptor are

$$
\begin{gather*}
V_{x}=W_{x}+\omega_{z} V_{y}, \quad V_{y}=W_{y}-\omega_{z} V_{x}-g \tag{1.1}\\
0=W_{z}+\omega_{y} V_{x}, \quad \omega_{z}=-V_{x}^{r} / r, g=g_{0}\left(R_{0} / r\right)^{2}
\end{gather*}
$$

The rates of change of the angles defining the orientation of the rotating axes relative to the inertial axes are given by the differential equations

$$
\begin{equation*}
\frac{d \Omega}{d t}=\omega_{y} \frac{\sin u}{\sin \imath}, \quad \frac{d i}{d t}=\omega_{y} \cos u, \quad \frac{d u}{d t}=-\omega_{z}-\omega_{y} \sin u \operatorname{ctg} i \tag{1.2}
\end{equation*}
$$

We shall make our choice of the control law for the motion of the center of mass of the interceptor subject to the conditions of integrability of equations of motion (1.1), (1.2); moreover, we shall restrict its choice to the class of functions in which the control constants ensuring convergence of the spacecraft can be determined with sufficient

