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Stability of the equilibrium position of a nonautonomous Hamiltonian system with two 
degrees of freedom is investigatied for the resonant case. The conditions of instability 

as well as those of formal stability are obtained. 

1, We assume that the coordinaLe origin qi = pi -= 0 corresponds to the position of 
equilibrium of the canonical system of differential equations 

aH ‘Vi dPi aH 
dt - i?pi dt --q- (i = 1,2) Wl 

where H is a Hamiltonian function Bn-periodic in t and analytic in the vicinity of the 
point 4i = Pi = 0. 

Let the linearized system be stable and all its multipliers be distinct. We assume that 

the Hamiltonian inf 1-l) is transformed into 

H = l/z LI (q2 + ~2) + l/z b (~‘2 + pa’) + ,?j $,v2vJv, (t) Q;’ Q2”* p,“’ Pz” (1.2) 
v=3 

by means of a real linear 2nperiodic canonical transformation [l]. In (1.2) * ihr and 
+ ih, are the characteristic indices of the linearized system and vi are nonnegative 

integers v = VI + vz + vs + v4, ~YIYpY3Y( u + 2n)= ~,,,2”J”, (t) 

We also assume that the condition 

& + k,& + 0 (mod 1) (1.3) 

holds for the integers kl and k, satisfying the equalities I kl 1 + 1 k, [ = 3 or 1 kl ) i- 

+ Ik, ) = 4. Then there exists [Z] an analytic canonical transformation 2n-periodic in 

t , reducing the Hamiltonian (1.2) to the form 

H = &rr + X,r, + L,,& + JIII~~I~~ + &,~‘a” + O(lq 15) (1.4) 

(1 4 I = V/Ql’ + Qz’ + PI2 + ?2, 2ri = Pi’ + Pi’) 

Coefficients lviyIvJv, in (1.4) are independent of t. Let the quadratic form 

1 2020r12 + lllllrlrz + b.o,~,2 
be sign definite in the quadrant t-1 > 0, r2 > 0. Then the position of equilibrium is 
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formally stable [l, 3 and 41. This means that for the system (1.1) there exists a power 
series, possibly divergent, 

c = G, (4il Pi? t) + G,+1 (Si, Pi, t)+... (1.5) 

which formally will be a positive definite integral b-periodic in t. In other words, all 

coefficients Of the pwer series G,, HP, - Ga,Hq, + G,,H,, - Gp2Hq2 + G, (l-6) 
are identically equal to zero and 

At the same time 
Gn (si, pi, t) > 0 

Only for qi = pi = 0 . 
Gm((Qi, Pi> ‘) =O 

Formal stability implies that retention of terms of arbitrarily high power in v in the 

expansion (1.2) does not lead to detection of the Liapunov instability. Even if trajecto- 
ries beginning at the coordinate origin exist, the progress along these trajectories is ex- 

tremely slow [3 and 5-Q 
In this paper we investigate the stability when condition (1.3) does not hold for ki > 0. 

We assume that condition (1.3) does not hold for a single pair of nonnegative integers 
kl and k, satisfying the condition kl + k, = 3 or kl + k, = 4, i.e. we investigate non- 

multiple resonances. 
Thus we shall consider the following nine resonant cases: 

(1) 3hl = m, (2) 3h, = m, (3) hr + 2h2 = m 

(4) 2h1 + AZ = m, (5) 4h1 - m, (6) 4 h, = m (1.7) 

(7) 2 (hi + 1,) = m, (3) hi + 3h, = m, (9) 3hi + h, = m 

where m is an integer. 
Since the multipliers are assumed distinct, the integral and half-integral values of li 

as well as those satisfying the equation lLlf h,~ 0 (modl) are not considered. This means 
that the stability of (1.1) is studied within the region of stability of the linearized system. 

2, We shall first consider the stability in the cases (l)-(4). Applying a real, analytic 
transformation 2n-periodic in t (see Sect.4) we can eliminate all third degree terms in 
the Hamiltonian (1.2) other than resonant. In the new variables qi* and pi* the Hamil- 

tonian becomes H* = Hz* + H,* f 0 (I q/ 4) 

Here H,* - l/&, (q1*3 + Fade) + l/& (Quip f P2*“), and expressions H,* for the cases 
(l)-(4) of (1.7) are 

(1) H; = 2u;, (qT” - 3q;PT2J - 2&,, (P:” - .7P; q;‘, 

(2) H; = 2~;~~ (q;” - 3q;p;‘) - 2~&,a (p;” - 3p;q;*) (2.1) 

(3) H; = - 2& * *’ *’ * * ’ * [Qr (P* - 43 1 + 2P,q*P,l - %x)12 [PT (Pi2 - rlZ) - a:Q;P;l 

(4 ff; = - 2~;~~ [q; (pi2 - q;“, + 2P;q;p;l- 24,21 [p; (P;” - (I;‘, - %;rl;p; I 

respectively. 
The following notation is introduced in (2.1) : 

u* = x,,,2ysy, cos mt + H.,,~,~~~.,, sin mt, 

_I 

Y,v9vJv, V 
Y,v2Y3~v, = Y ,,I .,,., 3.,,CoS mt 2 %> ,,“: ~ ,,,,, sin ntt 

2x 
1 , 

5 -- 
h%YJY, - 2n s (IL y,y2,,31,, cos mt - v’ y,~,2y3y, sin 4 dt (2.2) 

0 
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Expressions for u: ,,,*., ,“, and v:,,~~~~,, are given in Sect. 4. 
For each of the resonant cases (l)-(4) the following theorem holds. 

The ore m 2.1. If z&Jy, + ~~~~~~~~~~ # 0, the. position of equilibrium is unstable. 
We shall prove this for case (1). After the canonical transformation 

q,* = pi” sin (kit - 0) + qi” cos (hit - 0) 

pi* = pi” cos (hit - 0) - qi” sin (Lit - 6) 
(L = f, 2) (2.3) 

where 

sin 3e = v .;;; y,2,0 ’ cos 3e = J/- Zo;; YO;ao 

we obtain the Hamiltonian in the following form which is independent of t up to the 
third order terms inclusiye: 

H” = 2 ~mw,L + yoolo2 ((11”~ -- 3~1”p1~~) + 0 (1 7 I”) 
Changing to polar coordinates 

qio = VSi sin ‘pi, pi0 = 1/2Ti cos cp. 2 (i = 1, 2) (2.4) 
we obtain 

H” = - 4 f/B (x0&O + Y&~) r1 I/Gain 3T1+ 0 ( I q 14) (2.5) 

Using now Chetaev theorem [9] to prove the instability, we take the function V in the 
form F = V,V,, where 

vl = rla - rS2, V, = rlv/,cos 6~1 (a > 2) (2.6) 

and define the region V > 0 by (VI > 0, --x/l2 < ‘pl < x/12). At the boundary of this 
region either V1 or V, is equal to zero and within the region the following equality holds: 

r2 = BQ aI2 (0 < B < i) (2.7) 

We choose the parameter a so, that the derivative of T’ (by virtue of the equations of 

motion containing the Hamiltonian (2.5)). is positive definite in the region l’ > 0. 
It can easily be verified that for 2 < a < 3 

-$ = 6 V 2 (zo&o + y$so) ry+’ (12~ cos 3% + f1] cos 69 + 3 (1 - /3”) x 

x [cm 3% + sin 3% sin 6% + f& (2.3) 

where j1 and f2 become arbitrarily small when r1 tends to zero. 
In the region V > 0 we have cos 391 > v 2 / 2 and cos3cP1 + sin3cp1sin6cpl >I. 

It therefore follows from (2.7) and (2. 8) that for sufficiently small 1 Q 1 the function 
dV / dt is positive definite in the region V>O , and by the Chetaev theorem the position 

of equilibrium is unstable. 
In case (3). applying (2.3) and (2.4) where we now have 

yomz ~0012 
sin 38 = 

we obtain I/ r&, + Y,&, ’ cos 3e = v x0:12 + Yoil2 

Ha=-4v2( z&, + Y~&~) r2 VC sin (cpl f 2%) + 0 (I q 14) (2.9) 

In order to prove the instability, the Chetaev function should be taken in the form 
V = V,V,, where 

VI = rza - (r2 - 2r#, V, = r2 1/F cos2 (cp1 + 2q,) (2 < a < 3) (2.10) 

and the region V > 0 should be defined by (~1 ) 0, --n/4 < ‘~1 + 2q2 4 n / 4). 
Proof of the theorem for the cases (2) and (4) is analogous to that of (1) and (3), 
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respectively. 
3, Next we &all consider the stability in the cases (5)-(g). Here the transformed 

Hamiltonian in polar coordinates has the form 

H” = l,os0$ + IlrrrQr* + &oars2 - H** (ri’ir Vi) 4 H’ (39 Cpit 0 (3.1) 

In (3.1) H’ = 0 (1 ~16’) and the function H ** for the cases (5)-( 9) is, respectively, 

(Xi!) 

When bringing the Hamiltonian to the form (3.1) we assume. that 
,$ 

“,“oY%“, + Y~‘V*v8”* + 6 
and in the formulas (2.3) we have 

sin&=- 
Jf~:,“;;:;y:,%,.,,,. ’ ros GO = - .I/~~~“~::?~lZ,..,,. 

Formulas for 1 “iv, V8V,, zYIV2YsY, and Y y,yI YaV, are given in Sect. 4. 
We introduce the quantities Aj. andBj (j = 5,6,7,&g) for each of the resonant cases 

(5)-( 9), defining them as follows: 

As=‘I/ %& + Y&o, Bs= hi 

As=1/ x~+Y~~, B%= b?oz 

4=1/ d7o + &o , B7= 12010 + fIllI + lors (3.3) 

Aa=31/3( $00 + Y&M) * Ba = b3To + 311111+ QlO?OZ 

As = 3 v’ 3 @&,, + Y.;;,) . Be =9&X0 + 31111r + fo%z 

‘I he ore m 3.1. If the inequalities Aj # 0 and Aj > 1 Bj 1 hold simultaneously, the 
position of equilibrium is unstable. If Af < 1 Llj 1 and the I-Iamiltonian includes terms 
of up to the fourth order, the equilib~um is stable. If the function P-E’ is sign defy- 
nite, the position of equilibrium is formally stable. 

Let us prove the theorem for case (5) To prove the first statement of the theorem 
we take the Chetaev function in the form v = v,v,, where 

VI = q Q - r,“, Vz = rl”~~,tj&Zcpl (a = 1 + E, 2 < a < 3, 0 < a 4 i) (3*4) 

and define the region v > 0 by (VI > 0,--n I 8a < cpl < n / 8a). 
Within V > 0, we have 

r2 = Brl ai2 
and the derivative is 

(O<B<f) 

dV 
- = 4rTi3 ((aA COS h(p1-t gl) COS Qacp, + 2 (1 - /3") [A6 cos ~E(P~ - I36 sin 4a(pr + dt 

+ e sin.4ucpl (AS sin 4cpl- &) + @I) (3.5) 

where the functions gr and gz are arbitrarily small when rl tends to zero. 
Since by definition we have -45 > 1 B, 1, therefore at sufficiently small e the function 
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dl’ / dt will be positive definite in the region V > 0 for sufficiently small ]q 1. This 

proves the statement on instability. 

Second statement of the theorem is proved by constructing a Liapunov function for 
the truncated system with a Hamiltonian Ho - H’,possessing two integrals r2 = soriFt 
and H” - H’ = const. This function is taken in the form 

J$r zzz r24 $- (Ho _ H’) ‘? (3.6) 

It is easy to verify that the latter is positive definite for A, < 1 B, 1 , therefore the posi- 
tion of equilibrium is stable [lo]. 

To prove the last statement of the theorem we apply the transformations described in 
Sects, 2 and 4 to the Hamiltonian (1.2) reducing it formally to a function independent 
of to in all orders. Then the expression G E H” will formally be the integral of (1.1). 
provided that it is written out in the initial variables pi and pi. We obtain 

G = G, -;- G> + . . . (C, a~ HO - H’) 

Therefore, if H” - H’ is a sign definite function, the position of equilibrium is for- 
mally stable. 

In case (7) we prove the instability with the aid of Chetaev function I/ -VIV,, where 

T’r = rzG - (rl - re)?, T7, = rlrz cos2a (cpl + rp*) (a = 1 + e, 2 < a 4 3, 

O<E<l) (3.7) 
defining the region V > 0 by (vi > O,- n / 4a < rpI + ‘pz < TC / 4a). The stability in 

case (7) is proved with the aid of the Liapunov function 

it’ = (ri - r2)4 + (If” - H’)3 (3.8) 

In case (8) we can take the function T- in the form V = VJ,, where 

Vi = rta - (r2 - 3rJ2, tyz = r2 J& cos a(rpl + 3q,) (a = 1 + a, 2 < cc < 390 < E < i) 

and define the region Ti > 0 by (V, > 0, --n: / 2~ < 91 f 3%< n / 2a). Function 1)’ 
in this case can be taken in the form 

TV = ( ra - 3r1)4 + (Ho - ff’)2 

Consideration of the resonances (6) and (9) is analogous to that of (5) and (8), respec- 

tively. 
Notes. a) Resonances @i + @, E 0 (mod 1) for which I b 1 •b 1 k, 1 > 5 are not 

essential for the proof of Theorem 3.1 on formal stability. 

b) If the equality z~,,~~,~~ + $ ,yzy 3yg = 0 holds in cases (l)-(9), the presence 

of a resonance does not obstruct in reduction of the Hamiltonian to the form (1. B),and 

the criterion of formal stability given in Sect. 1 is applicable. 

4. Here we give the computational formulas, Let the Hamiltonian in (1.1) have the 

form (1.2). We shall introduce new canonical variables qi* and pi* by means of the 

following generating function : 
,Y = qlpl’ + q$%’ + 2 syly*yJy, (q Q1Y1Q?“zPl*Y%*Y4 

v-3 

Here s~,v,v,v, (t + 2n) = s~,v,~~~, (t). Let us denote the new Hamiltonian by H’ (qi’, 

Pi.7 t). We have the following identity: 

which yields 

(4.1) 
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H,* = He,. H3* = H, $ DS, (4.3 

Here H,, Hk* and sA are homogeneous k th degree functions in expansions into the 

power series of H, H* and s , and D denotes the operator 

D=?uI Q&I 
( 

+)+&*&-Yt&- J 

a 
+at 

Let us choose the coefficients sylylyIy, such that the function H,* would assume its sim- 

plest form. Proceeding to complex conjugate canonic variables 

Qk ‘=qI,tip,‘, pk’ = qk - ip,’ (k=l, 2) 

it is easy to show p] that Ha* can be eliminated if 

a Y*YIYQY,= hl(V3 - Vl) + A? (v4 - vz) 

is not an integer. Simple manipulation yields the following expressions for the coeffici- 

ents sy~yzvSv~: 
Y ” I 

So300 = Uooo3 + uo102' So102 = Uo102 - 3u&,, So2o1 = &a + 37Jk3, 
0 ” n 

+ %620* 

II 
%003 = ~0102 - vooo3' S3000 = uoo~o S1020 = 5020 - 3uo;;30’ 

* + 3vo;;30, 
I *, I * 

Szolo = vlo20 So030 = vlo20- voo30' SIOOZ = uo;ll - %012- uo210 
I, n ,, 

Sl200 = uc@lz + uo21rJ + UOlll' 
Y I, I 

%210= DO111 + voo12 +"ozIo* So111 = w&o - &2) 
" " 

%012=~0111-~0~12 -~0210* S:lol= wG12- %;,fJ 
* *I I 

S 
0120 = uloll- %21- u2;01, SZlOO = %021+ u2001 M -t-& (4.3) 

” II ” 
%01= vloll + voo21 + V2001' 

,, ,, * 
s 
0021= vloll- ~0021- v2001 

S loll= 2 (Go,- %621)~ Slllo=wo~21-~p;;Oli 
" 

U 
“I%bV, = g (t) sin a v,v,v,v,t + f (t) con %l”,“,~,lt 

u- (4.4) 
Wt%% = g (t) toe =,ly,vsv,t - f (t) sin evIvlv,v,t 

g(t)= c&T *a,,y,“8”, 11(2n) + I,(k)- 212(t) 

(4.5) 
t f (t) = Zl(W - ctg na"Iy1y3y,z2 (2n)- 211 (t) 

It @) = s (%I&8y, cos %,V,VSV,~ - vy,&, sin av,~,,V,.,,r) dx 

(4.3) 
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But if av,v,v,vr = m (m is an integer), then the function Hs* cannot be made to vanish 
identically. It can however be reduced to a normal form, reflecting the resonant char- 
acter of the problem. In Sect.2. the transformed function is given for particular cases 
of the resonance av,v,vJvl = m. 

Function Ha* can be simplified in a similar manner. Coefficients of the normal form 
required in the investigation of stability in the resonant cases (5)-(g) are 

2x 

I - L 1 (h;202 + 3h;, + 3h&,) dt 0202 - 4% 

0 

Coefficients x,,,,,~~~~, and ~~~~~~~~~ are obtained from (2.2), where we must set 

u;,, = l/z (h;,, + h,‘,, - h&a,, 1, ~~~~~ = V2 @;o,o - hIo .o) 
, 

uom =%s&o* + f$J&- ~;,,,I, ()ow =1/21h;30L- &..) 
I 

%oo =w&o + h,:,,, - g,,, - $2,,), &, = lh(~;,~, + 

+ h;o,, - f&o - h;2o,h &, = I/? V&o" + h;,,, - hf,,, - h;oll) (Q:l 

u3100 =w& + f&j@ - g,,, - &),fr =& =?h(Q22 -t- 

+ h;2oo 4220 - $00, - fG,,)t G,,, = */w;121 + ‘q,,, - q*10 - ql,,) 

Here A* y,ylygy, are the coefficients accompanying the corresponding powers in H,* com- 
puted according to the formula (4.2). 

In conclusion we note certain inaccuracies which appeared in [ll] in the proof of 
instability. Derivatives of the functions (2. 8) and (3.8) of this paper can assume nega- 
tive values near the boundaries of the corresponding regions V > 0 and, consequently, 
need not be positive definite in these regions. For wt = 2~~ and wr = 30% , the value 
of V used in the present paper in the cases (3) and (8) , respectively, should be adopted, 

and for or = 30, in the condition of instability the sign > should be replaced by 7. 
Thanks are due to A. L. Kunitsyn and Iu. A.Sadov who kindly drew my attention to 

the above inaccuracies. 
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degrees of freedom 

Translated by L. K. 

The problem of motion of an interceptor spacecraft along a three-dimensional trajectory 
in a central gravitational field is considered ; this trajectory is the mapping in the invo- 
lute plane of the shape, dimensions, and orientation of the Keplerian orbit of the target 

spacecraft. Control laws which 

Fig. 1 

yield analytical solutions of the encounter problem are 

chosen. The active spacecraft is referred to as the “in- 
terceptor”, the passive spacecraft as the “target”. 

1. The motion of the interceptor under the control- 
ling acceleration W applied to its center of mass O1 is 

described by equations in the rotating right-hand ortho- 
gonal coordinate system Oryz whose y-axis coincides 
with the radius vector constructed from the attracting 
center 0 to the point 0,, and whose r-axis coincides 

with the direction of motion in such a way that the vec- 
tor of the absolute velocity of the interceptor’s center 
of mass lies in the SI, -plane. The orientation of the 
axes .TYZ relative to the inertial coordinates is defined 

(see Fig. 1) by the longitude P of the ascending node, 
the inclination i of the instantaneous orbital plane to the equator, and the range angle 

a. The equations of motion of the center of mass of the interceptor are 

11X* = I+-% + Of v, ) L’, . = w, - w,v, - g (1.1) 

0 = TV, + oJx, 0, = -Vx / r, g = go (I?, / r)’ 

The rates of change of the angles defining the orientation of the rotating axes relative 
to the inertial axes are given by the differential equations 

rzs2 sin u di du 
- = q) - 
tit smr ’ ;zi = coy c,Os u, z = - 0, - my sinuctgi (1.2) 

We shall make our choice of the control law for the motion of the center of mass of 
the interceptor subject to the conditions of integrability of equations of motion (1. l), 

(1.2); moreover, we shall restrict its choice to the class of functions in which the con- 
trol constants ensuring convergence of the spacecraft can be determined with sufficient 


